Use of high hydrostatic pressure to inactivate natural contaminating microorganisms and inoculated E. coli O157:H7 on Hermetia illucens larvae
نویسندگان
چکیده
A chemical and microbiological characterization on Hermetia illucens larvae was carried out as well as an inactivation study of natural contaminating microorganisms and inoculated E. coli O157:H7 in black soldier larvae by using High Hydrostatic Pressure (250 to 400 MPa, for 1.5 to 15 min). Hermetia illucens was mainly composed of proteins (46.49%, d.m.) followed by fat (37.88%, d.m.). Larvae had a high contamination load of Total Aerobic Mesophilic bacteria (AMB) (1.58x107 cfu/g) and Enterobacteriaceae (1.15x106cfu/g). The presence of pathogenic microorganism varied: no Listeria spp. were found, but Salmonella (1.15x106 cfu/g) and E. coli (7.08x105 cfu/g) were detected in the larvae extract. High Hydrostatic Pressure (HHP) was effective against natural contaminating yeasts and molds producing more than 5 log cycle reductions at 400 MPa for any of the times considered (2.5 to 7 min), but a low reduction of total microbial load was achieved. The inactivation level of larvae inoculated with E. coli O157:H7 varied. At 400 MPa for 7 min more than 5 log cycle reductions were achieved. Among the three inactivation models studied, the one that best described the inactivation pattern of the cells, according to the Akaike index, was the Biphasic model.
منابع مشابه
Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly.
Green fluorescent protein-labeled Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were inoculated at 10(7) CFU/g into cow, hog, or chicken manure. Ten- or 11-day-old soldier fly larvae (Hermetia illucens L.) (7 to 10 g) were added to the manure and held at 23, 27, or 32 degrees C for 3 to 6 days. Soldier fly larvae accelerated inactivation of E. coli O157:H7 in chicken manu...
متن کاملUse of high hydrostatic pressure to inactivate Escherichia coli O157:H7 and Salmonella enterica internalized within and adhered to preharvest contaminated green onions.
Green onions grown in soil and hydroponic medium contaminated with Escherichia coli O157:H7 and Salmonella were found to take up the pathogens in their roots, bulbs, stems, and leaves. Pressure treatment at 400 to 500 MPa for 2 min at 20 to 40°C eliminated both pathogens that were internalized within green onions during plant growth.
متن کاملDetection of Viable But Non-Culturable State of Escherichia coli O157:H7 Using Reverse Transcription PCR
Background and Aims: Many bacteria including Escherichia coli may enter into a viable but non-culturable (VBNC) state under unfavorable stresses, which are unable to be detected by culture-based methods. In this study, the use of Reverse Transcription PCR (RT-PCR) for detection of VBNC state of E. coli O157:H7 was investigated. Materials and Methods: Escherichia. coli O157:H7 was inoculated i...
متن کاملAntimicrobial Effect of Chitosan Coating Prepared by Neutral Electrolyzed Water against Inoculated Escherichia coli O157:H7 on Rainbow trout fillets
Background and Objectives: Nowadays, to avoid the use of synthetic preservatives, which do more harm than good, numerous studies are currently focused on using natural ingredients to enhance food product quality and shelf life. Since no study has been conducted on combining coatings with electrolyzed water containing natural antimicrobial compounds, the present study has innovation and priority...
متن کاملStudy on the growth and survival of Escherichia coli O157:H7 during the manufacture and storage of Iranian white cheese in brine
The behaviour of Escherichia coli O157:H7 was studied during the manufacture and storage of Iranian white cheese in brine. Cheese was manufactured using pasteurized cow milk and inoculated with E. coli O157:H7 with inoculum level of 103 cfu/ml. Four treatments were designed. Cheeses were made with or without starter culture and kept immersed in 6 or 8% salt brine during ripening and storage. Ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018